OTS964 HCl

Alias: OTS964 HCl; OTS-964 HCl; OTS 964 HCl
Cat No.:V3181 Purity: ≥98%
OTS964 HCl, the hydrochloride salt of OTS-964 and a dimethylated derivative of OTS 514, is a potent and selective inhibitor of TOPK (T-lymphokine-activated killer cell-originated protein kinase) with antitumor effects.
OTS964 HCl Chemical Structure CAS No.: 1338545-07-5
Product category: TOPK
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of OTS964 HCl:

  • OTS964
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

OTS964 HCl, the hydrochloride salt of OTS-964 and a dimethylated derivative of OTS 514, is a potent and selective inhibitor of TOPK (T-lymphokine-activated killer cell-originated protein kinase) with antitumor effects. With a high affinity and selectivity, it inhibits TOPK (IC50 = 28 nM). TOPK, a protein that is overexpressed in a number of cancers and tumors, is thought to function as an oncogene that encourages the growth of tumors. OTS964 may therefore have anticancer properties because it is a TOPK inhibitor. Both in vitro and in xenograft models of human lung cancer, it results in a cytokinesis defect and subsequent apoptosis of cancer cells. OTS964 administered as a liposomal formulation successfully caused total regression of transplanted tumors without causing any adverse reactions in mice, but it also caused hematopoietic adverse reactions (leukocytopenia associated with thrombocytosis).

Biological Activity I Assay Protocols (From Reference)
Targets
TOPK (IC50 = 28 nM); CDK11B (IC50 = 40 nM)
ln Vitro

OTS964 hydrochloride (10 nM; 48 hours) inhibits the growth of cancer cells[1].
OTS964 hydrochloride (10 nM; 48 hours) increases cancer cell death[1].
OTS964 (0.1-2 μM; 24 and 48 hours) exhibits a dose-dependent increase in LC3-II expression and a decrease in P62 expression[3].

ln Vivo
OTS964 hydrochloride causes tumors to continue to shrink even after treatment, eventually showing full regression[1].
OTS964 hydrochloride completely suppresses tumor growth in the end.
Cell Assay
At a specific density, 100 μl of cells are plated in 96-well plates. Prior to being exposed to compounds for 72 hours at 37°C, the cells are given an overnight period to adhere. At 450 nm in wavelength, plates are read using a spectrophotometer. Three duplicates of each assay are run. The z scores are computed to yield P values once the IC50 values have been measured. The log values of the IC50 for each of the 13 TOPK-positive cell lines are transformed to base ten (nM) and the mean and standard deviation are then computed.
Animal Protocol
Nude mice bearing LU-99 lung cancer cells[1]
40 mg/kg
Intravenously; on days 1, 4, 8, 11, 15, and 18
References

[1]. TOPK inhibitor induces complete tumor regression in xenograft models of human cancer through inhibition ofcytokinesis. Sci Transl Med. 2014 Oct 22;6(259):259ra145.

[2]. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci Transl Med. 2019 Sep 11;11(509).

[3]. TOPK inhibits autophagy by phosphorylating ULK1 and promotes glioma resistance to TMZ. Cell Death Dis. 2019 Aug 5;10(8):583.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C23H24N2O2S.HCL
Molecular Weight
428.98
Exact Mass
428.1325269
Elemental Analysis
C, 64.40; H, 5.87; Cl, 8.26; N, 6.53; O, 7.46; S, 7.47
CAS #
1338545-07-5
Related CAS #
OTS964;1338542-14-5
Appearance
Solid powder
SMILES
CC1=CC(=C(C2=C1NC(=O)C3=C2C=CS3)C4=CC=C(C=C4)[C@@H](C)CN(C)C)O.Cl
InChi Key
YHPWOYBWUWSJDW-UQKRIMTDSA-N
InChi Code
InChI=1S/C23H24N2O2S.ClH/c1-13-11-18(26)19(16-7-5-15(6-8-16)14(2)12-25(3)4)20-17-9-10-28-22(17)23(27)24-21(13)20;/h5-11,14,26H,12H2,1-4H3,(H,24,27);1H/t14-;/m0./s1
Chemical Name
9-[4-[(2R)-1-(dimethylamino)propan-2-yl]phenyl]-8-hydroxy-6-methyl-5H-thieno[2,3-c]quinolin-4-one;hydrochloride
Synonyms
OTS964 HCl; OTS-964 HCl; OTS 964 HCl
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: >100 mg/mL
Water: <1mg/mL
Ethanol: <1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.83 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (5.83 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (5.83 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.3311 mL 11.6556 mL 23.3111 mL
5 mM 0.4662 mL 2.3311 mL 4.6622 mL
10 mM 0.2331 mL 1.1656 mL 2.3311 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • OTS964 HCl

    TOPK expression levels, IC50values to TOPK inhibitors and suppression of FOXM1 in ovarian cancer cell lines.2016 Dec 15;22(24):6110-6117.

  • OTS964 HCl

    In vivoefficacy of OTS514 in ES-2 ovarian cancer peritoneal dissemination xenograft model.2016 Dec 15;22(24):6110-6117.

  • OTS964 HCl

    Growth-inhibitory and cytotoxic effects of OTS514 for ovarian cancer cells freshly-isolated from patients.2016 Dec 15;22(24):6110-6117.

  • OTS964 HCl

    2016 Apr 5;7(14):17652-64
  • OTS964 HCl

    2016 Apr 5;7(14):17652-64
  • OTS964 HCl

    2016 Apr 5;7(14):17652-64
Contact Us Back to top